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Abstract
Fractional differential equations (FDEs) considered so far contain mostly left
(or forward) fractional derivatives. In this paper, we present analytical solutions
for a class of FDEs which contain both the left and the right (or the forward and
the backward) fractional derivatives. The methods presented use properties
of fractional integral operators (which, in many cases, lead to Volterra-type
integral equations), an operational approach and a successive approximation
method to obtain the solutions. The methods are demonstrated using some
examples. The FDEs considered may come from fractional variational calculus
(FVC) or from other physical principles. In the case of fractional variational
problems (FVPs), the transversality conditions are used to identify appropriate
boundary conditions and to solve the problems. It is hoped that this study will
lead to further investigations in the field and more elegant solutions would be
found.

PACS numbers: 45.10.Db, 02.30.Xx

1. Introduction

In the last two decades, fractional derivatives (or fractional calculus) have played a very
important role in various fields such as mechanics, electricity, chemistry, biology, economics,
and notably control theory, robotics, image and signal processing [1–6]. Application of
fractional derivatives (FDs) to modelling of many of these systems leads to fractional
differential equations (FDEs) [2, 6]. Several analytical techniques have been developed to
solve these equations which include integral transforms (such as Laplace, Mellin and Fourier),
Greens function, operational methods, series solutions and others [1, 2, 6–11]. The FDEs
considered in these books, monographs and special issues include only one type of FDs and
mostly the left (or forward) FDs. For simplicity in the discussion to follow, we will call the
FDEs that contain only one kind of FDs as Type1 FDEs. In many applications, the resulting
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FDEs may contain both the left and the right (or the forward and the backward) FDs [12, 13].
We will call such FDEs as Type2 FDEs. To our knowledge, only a few papers have considered
analytical solutions of Type2 FDEs [12, 13] that are very simple.

In this paper, we present analytical techniques to solve Type2 FDEs that are more general
than those considered in the past [12, 13]. We utilize properties of fractional integrals (which,
in many cases, lead to Volterra-type integral equations), operational method and successive
approximation to develop the methods. Class2 FDEs considered here arise in fractional
variational calculus (FVC) [12, 13]. Note that many integer-order differential equations come
from physical principles that do not have variational formulations. Therefore, we believe that
many future Type2 FDEs would also come from other sources. The methods are demonstrated
using examples.

To solve differential equations (integer or Type1/Type2 fractional order), terminal or
boundary conditions are necessary. When an integer-order differential equation is obtained
using a variational formulation, the transversality conditions provide the natural boundary
conditions. Such formulations for FVPs have recently been presented in [13]. It is
demonstrated that the transversality conditions provide a way to identify suitable natural
boundary conditions for Type2 FDEs [13].

It should be emphasized that the focus of this paper is only on analytical techniques for
Type2 FDEs. However, some papers have recently presented numerical techniques for this
class of problems (see, for example, [14, 15]). As pointed out above, FVPs lead to Type2
FDEs. Some direct numerical techniques to solve FVPs, which do not obtain FDEs, could be
found in [16, 17]. Other fractional variational formulations (which also lead to Type2 FDEs)
and their applications in various fields of science and engineering could be found, for example,
in [12, 13] and the references cited therein.

To develop our methods, in the next section, we present the definitions of derivatives and
integrals of fractional orders and their properties relevant to this work.

2. Fractional derivatives and their properties

Several definitions have been proposed for a fractional derivative. We will deal with the
Riemann–Liouville and the Caputo fractional derivatives only. In this section, we present the
definitions of these two derivatives and their properties pertinent to this research.

We begin with the left and the right Riemann–Liouville fractional integrals of order α > 0
of a function x(t) which are defined as [2]

0I
α
t x(t) = 1

�(α)

∫ t

0
(t − τ)α−1x(τ) dτ, t, α > 0 (1)

and

t I
α
1 x(t) = 1

�(α)

∫ 1

t

(τ − t)α−1x(τ) dτ, t, α > 0, (2)

where �(∗) represents the gamma function. We have selected the limits as 0 and 1. However,
other limits can also be selected. Using (1) and (2) the left and the right Riemann–Liouville
derivatives 0D

α
t x(t) and tD

α
1 x(t) and the left and the right Caputo derivatives C

0D
α
t x(t) and

C
t D

α
1 x(t) of order α > 0 are given as

0D
α
t x(t) = Dn

0I
n−α
t x(t), n − 1 < α < n, (3)

tD
α
1 x(t) = (−D)nt I

n−α
1 x(t), n − 1 < α < n, (4)

C
0D

α
t x(t) = 0I

n−α
t Dnx(t), n − 1 < α < n (5)
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and
C
t D

α
1 x(t) = t I

n−α
1 (−D)nx(t), n − 1 < α < n, (6)

where D = d/dt represents the ordinary derivative and n is an integer. These derivatives
satisfy the following properties:

0I
α
t 0D

α
t x(t) = x(t) −

n∑
j=1

(
0D

α−j
t x

)
(0)

�(α + 1 − j)
tα−j , (7)

t I
α
1 tD

α
1 x(t) = x(t) −

n∑
j=1

(
tD

α−j

1 x
)
(1)

�(α + 1 − j)
(1 − t)α−j , (8)

0I
α
t

C
0D

α
t x(t) = x(t) −

n−1∑
j=0

(Djx)(0)

�(j + 1)
tj , (9)

t I
α
1

C
t D

α
1 x(t) = x(t) −

n−1∑
j=0

((−D)jx)(1)

�(j + 1)
(1 − t)j . (10)

Identities (7) and (9) could be found in [11]. Identities (8) and (10) could be derived using the
properties of t I

α
1 , tD

α
1 x(t) and C

t D
α
1 x(t). On the other hand, one can also prove (8) and (10)

by applying the reflection operator Q on (7) and (9) [9].
Identities (7)–(10) will play a crucial role in analytical schemes discussed here for Type2

FDEs for which we also need terminal conditions. In FVC, the Euler–Lagrange equations
and transversality conditions provide the necessary FDEs and natural boundary conditions,
respectively. For this reason, we briefly provide a summary of the Euler–Lagrange equation
and transversality conditions for a simple FVP. Further details could be found in [13].

3. The Euler–Lagrange equation and the transversality conditions

In this section, we briefly review the Euler–Lagrange equations and transversality conditions
for a simple FVP. For simplicity in the discussion to follow, we assume from here onwards
that 0 < α < 1. The Euler–Lagrange equations and transversality conditions for an arbitrary
α greater than zero could be found in [13].

A simple FVP can be described as follows: among all possible functions x(t), find the
function x∗(t) which minimizes the functional

J [x] =
∫ 1

0
F

(
t, x, C

0D
α
1 x

)
dt. (11)

This problem leads to the following Euler–Lagrange equation [13]:

∂F

∂x
+ tD

α
1

∂F

∂C
0D

α
t x

= 0 (12)

and the following transversality condition(
tD

α−1
1

∂F

∂C
0D

α
t x

)
δx(t)

∣∣1
0 = 0. (13)

Note that the functional contains only a left Caputo fractional derivative, whereas the associated
Euler–Lagrange equation contains a right RL derivative also. If the functional contained a
right Caputo fractional derivative, then the associated Euler–Lagrange equation would also
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contain a left RL derivative. Similarly, if the functional were defined in terms of a left and
a right RL derivatives, then the resulting Euler–Lagrange equation would have contained left
and right Caputo derivatives. The point to be made here is that an FDE resulting from an FVP
would contain both the left and the right fractional derivatives. This establishes the need for
developing analytical schemes for Type2 FDEs. Also note that according to (13) at t = 0
either x(t) should be specified or we must have(

tD
α−1
1

∂F

∂C
0 Dα

t x

) ∣∣∣∣
0

= 0. (14)

The same applies at point t = 1. Thus, (13) provides a clue as to what type of boundary
conditions should be considered to solve an FDE.

We now present analytical solutions for a class of Type2 FDEs.

4. Analytical solutions for a class of Type2 FDEs

Our aim is to solve Type2 FDEs of the following kind:

tD
α
1

(
a1(t)

C
0D

α
t x

)
+ tD

α
1 (a2(t)x) + C

0D
α
t (a3(t)x) + a4(t)x + tD

α
1 a5(t) + a6(t) = 0, (15)

where a1(t), a2(t), a3(t), a4(t), a5(t) and a6(t) are functions of time. In a more general setting,
they would also contain function x(t). This class of FDEs may come from FVC or from some
other physical principles. To the author’s knowledge, analytical schemes for such a general
Type2 FDEs have not been presented. Here, we will present analytical schemes for some
specialized class of Type2 FDEs. From here onward, it will be implicitly assumed that FDEs
considered are of Type2.

We begin with a simple FDE.

4.1. Analytical solution of a simple FDE

As the first example, consider the following FDE:

tD
α
1

(
C
0D

α
t x(t)

) = 1. (16)

In this case, a1(t) = −a6(t) = 1 and a2(t) = a3(t) = a4(t) = a5(t) = 0. Equation (16) is
perhaps the simplest FDE, because in this case the mixed derivative term is a constant. It can
be obtained by taking the Lagrangian F

(
t, x, C

0D
α
t x

)
as

F
(
t, x, C

0D
α
t x

) = 1
2

[(
C
0D

α
t x

)2 − x
]

(17)

and using (12). This problem was considered in [13], where the FDE (16) was derived
using (12) and (17), and the problem was solved using a numerical technique. Here, we
present an analytical technique for this problem.

To solve this problem, we consider the following initial condition:

x(0) = e0, (18)

where e0 is a constant. Equation (13) then requires that

tD
α−1
1

(
C
0D

α
t x(t)

)∣∣
x=1 = 0. (19)

In the discussion to follow, we assume that

tD
α−1
1

(
C
0D

α
t x(t)

)∣∣
x=1 = e1, (20)
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where e1 is a constant that need not be 0; the rationale for which will be given in the next
subsection. Note that this does not preclude us from taking e1 = 0. Applying t I

α
1 on both

sides of (16), and using (8) and (20), we obtain

C
0D

α
t x(t) = (1 − t)α

�(1 + α)
+

e1

�(α)
(1 − t)α−1. (21)

Applying 0I
α
t on both sides of (21), and using (9) and (20), we obtain

x(t) = e0 +
1

�(α)

∫ t

0
(t − τ)α−1

[
(1 − τ)α

�(1 + α)
+

e1

�(α)
(1 − τ)α−1

]
dτ. (22)

Equation (22) provides solution of (16).
We now consider analytical solution of a simple fractional oscillator.

4.2. Analytical solution of a simple fractional oscillator

We now consider the following FDE of a fractional oscillator:

tD
α
1

(
C
0D

α
t x(t)

) = ω2
αx(t), (23)

where ωα is the frequency of the oscillator. In this case, a1(t) = 1, a4(t) = −ω2
α and

a2(t) = a3(t) = a5(t) = a6(t) = 0. Equation (23) can be obtained by taking the Lagrangian
F

(
t, x, C

0D
α
t x

)
as

F
(
t, x, C

0D
α
t x

) = 1
2

[(
C
0D

α
t x

)2 − ω2
αx2] (24)

and using (12). For α = 1, (23) and (24) represent the differential equation of motion and a
Lagrangian of a one-dimensional oscillator and ω1 = ω its frequency. For this reason, for an
arbitrary α (23) and (24) are called an FDE and a Lagrangian of a fractional oscillator.

Solutions of FDEs of fractional oscillators have been considered by Narahari Achar and
coworker, Tofighi and others (see [18, 19] and the references therein). However, in those
papers, the differential equations of the fractional oscillators are obtained by replacing the
second derivative term with a forward fractional derivative of order 2α. In contrast, our
equation for the oscillator comes from a fractional Lagrangian and it contains both the left and
the right derivatives.

As in section 4.1, we assume that the following initial condition:

x(0) = e0, (25)

where e0 is a constant. Equation (13) then requires that

tD
α−1
1

(
C
0D

α
t x(t)

)∣∣
x=1 = 0. (26)

We assume that

tD
α−1
1

(
C
0D

α
t x(t)

)∣∣
x=1 = e1, (27)

where e1 is a constant which need not be 0. This assumption requires an explanation. Note
that for α = 1, the natural boundary condition requires that ẋ(1) be 0. However, in dynamics,
ẋ(0) is considered specified, and it need not be 0. Although the resulting trajectory provides
a solution of the differential equation for the oscillator, it does not give minimum of the
functional. The assumption in (28) is made in that spirit. This also provides a justification for
considering e1 an arbitrary real number in (20). Of course, if e1 �= 0, the resulting trajectory
will not give the minimum of the functional.

To find the solution of the fractional oscillator, we define
C
0D

α
t x(t) = ωαy(t). (28)
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Substituting (28) into (23), we obtain

tD
α
1 y(t) = ωαx(t). (29)

We now apply t I
α
1 on both sides of (29), and use (8) and (27), to obtain

ωαy(t) = C
0D

α
t x(t) = ω2

αt I
α
1 x(t) +

e1ωα

�(α)
(1 − t)α−1. (30)

Similarly, we apply 0I
α
t on both sides of (28), and use (9), (25) and (29) to obtain [9]

x(t) = ω2
α0I

α
t t I

α
1 x(t) +

e1ωα

�(α)
0I

α
t (1 − t)α−1 + c0. (31)

Equation (31) can be thought of as a Volterra-type integral equation that has composite integral
operators. This equation can be solved by using successive approximation or Heaviside
operational approach [6, 11]. Following the operational approach, we obtain

x(t) = (
1 − ω2

α0I
α
t t I

α
1

)−1
(

c0 +
e1ωα

�(α)
0I

α
t (1 − t)α−1

)

=
∞∑

j=0

(
ω2

α0I
α
t t I

α
1

)j

(
c0 +

e1ωα

�(α)
0I

α
t (1 − t)α−1

)
. (32)

Equation (32) provides solution of the FDE defined by (23) and the terminal conditions (25)
and (27). Note that the terminal conditions are linearly related to other terminal conditions.
Therefore, the above solutions can still be used to find solutions for other type of terminal
conditions.

4.3. Analytical solution of a general class of FDEs

As the third example, we consider the following FDE:

tD
α
1

(
a1

C
0D

α
t x + a3x

)
+ a3

C
0D

α
t x + a4x + tD

α
1 a5(t) + a6(t) = 0. (33)

This equation is obtained from (15) by taking a1(t), a2(t), a3(t) and a4(t) as constants, and
replacing a2 by a3. Functions a5(t) and a6(t) can still be functions of time. It can be
demonstrated that (33) can be derived by taking the Lagrangian F

(
t, x, C

0D
α
t x

)
as

F
(
t, x, C

0D
α
t x

) = a1

2

(
C
0D

α
t x

)2
+

a4

2
x2 + a3x

C
0D

α
t x + a5(t)

C
0D

α
t x + a6(t)x (34)

and using (12). We further restrict ourselves to the following conditions a4 = λ1a3 and
a3 = λ1a1. Thus, our formulation presented here is limited in scope. A general condition,
where a1, a2, a3 and a4 are functions of time with no additional restrictions on them will be
attempted in the future. With these assumptions, (33) reduces to

tD
α
1 y(t) + λ1y(t) = f (t), (35)

where

C
0D

α
t x + λ2x = 1

a1
y(t) (36)

and

f (t) = −(
tD

α
1 a5(t) + a6(t)

)
(37)

with

λ2 = a3

a1
. (38)
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As before, we assume the following initial condition:

x(0) = e0, (39)

where e0 is a constant. Equation (13) then requires that

tD
α−1
1

(
a1

c
0D

α
t x(t) + a3x + a5(t)

)∣∣
x=1 = tD

α−1
1 (y + a5(t))

∣∣
x=1 = 0. (40)

Thus, we assume that

tD
α−1
1 y

∣∣
x=1 = e1 (41)

where e1 is a constant which need not be equal to −tD
α−1
1 a5(t)

∣∣
x=1. Of course, this does

not preclude us from taking e1 = −tD
α−1
1 a5(t)

∣∣
x=1. If this condition is not satisfied, then

the resulting solution will not provide a minimum. Applying t I
α
1 on both sides of (35), and

using (8) and (41), we obtain

y(t) + λ1t I
α
1 y(t) = e1

�(α)
(1 − t)α−1 + t I

α
1 f (t). (42)

Equation (42) is a Volterra-type integral equation that can be solved using successive
approximation or using Heaviside operational approach [11]. Using operational approach
and a semigroup property of the operators t I

jα

1 , j = 0, . . . ,∞, we obtain

y(t) = e1(1 − t)α−1Eα,α[−λ1(1 − t)α] +
∫ 1

t

(τ − t)α−1Eα,α[−λ1(τ − t)α]f (τ) dτ, (43)

where

Eα,β(z) =
∞∑

j=0

zj

�(αj + β)
(44)

is the generalized Mittag–Leffler function. Applying 0I
α
t on both sides of (36), and using (9)

and (39), we obtain

x(t) + λ20I
α
t x(t) = c0 +

1

a1
0I

α
t y(t). (45)

Equation (45) is also a Volterra-type integral equation.
Using operational approach and a semigroup property of the operators 0I

jα
t , j =

0, . . . ,∞, we obtain

x(t) = c0Eα,1[−λ2t
α] +

∫ t

0
(t − τ)α−1Eα,α[−λ2(t − τ)α]y(τ) dτ. (46)

Substituting y(t) from (43) into (46), we get the solution for x(t).
As a special case, consider that a5(t) = (1 − t)β−1 and a6(t) = (1 − t)γ−α−1. In this

case, using (37), f (t) is given as

f (t) = −
[

�(β)

�(β − α)
(1 − t)β−α−1 + (1 − t)γ−α−1

]
. (47)

Using (47), (42) reduces to

y(t) = e1(1 − t)α−1Eα,α[−λ1(1 − t)α] − [�(β)(1 − t)β−1Eα,β [−λ1(1 − t)α]

+ �(γ − α)(1 − t)γ−1Eα,γ [−λ1(1 − t)α]]. (48)

Here, y(t) has been written explicitly in terms of t. Moreover, it can be written explicitly in
terms of power series. Substituting this into (46), we can obtain x(t) in terms of hypergeometric
functions.

We now consider an FDE for which a Lagrangian may not exist.
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4.4. Analytical solution of an FDE not amenable to a Lagrangian

In this section, we consider an FDE for which a Lagrangian may not exist. Specifically, we
consider the FDEs of the following type:

tD
α
1

(
C
0D

α
t x(t)

)
+ a2(t)

C
0D

α
t x(t) = f (t). (49)

Our effort suggests that this FDE cannot be obtained using a Lagrangian and the Euler–
Lagrange equation. We consider the following terminal conditions:

x(0) = e0 (50)

and

tD
α−1
1

(
c
0D

α
t x(t)

)∣∣
x=1 = e1. (51)

We define
C
0D

α
t x(t) = y(t) (52)

and rewrite equation (49) as

tD
α
1 y(t) + a2(t)y(t) = f (t). (53)

Applying t I
α
1 from right on both sides of equation (53), we obtain

y(t) + t I
α
1 (a2(t)y(t)) = e1

�(α)
(1 − t)α−1 + t I

α
1 f (t). (54)

Equation (54) is also a Volterra-type integral equation that can be solved using successive
approximation or using operational approach. Applying 0I

α
t on both sides of equation (52),

we obtain

x(t) = e0 + 0I
α
t y(t), (55)

where y(t) is given by equation (54).
We now consider two special cases.

Case 1: a2(t) = λ and arbitrary f (t).
In this case, equation (54) reduces to

y(t) = e1(1 − t)α−1Eα,α[−λ(1 − t)α] +
∫ 1

t

(τ − t)α−1Eα,α[−λ(1 − t)α]f (τ) dτ. (56)

Equation (56) can be obtained using a semigroup property of the operators t I
jα

1 , j = 0, . . . ,∞,
or the method of successive approximation [11].

Case 2: a2(t) = −λ(1 − t)β and f (t) = 0.
In this case, equation (54) reduces to

y(t) = e1

�(α)
(1 − t)α−1Eα,(α+β)/α,(α+β−1)/α[−λ(1 − t)α+β], (57)

where Eα,β,γ (z) is a function defined as [11]

Eα,β,γ (z) =
∞∑

k=0

ckz
k (58)

with

c0 = 1, and ck = 
k−1
j=0

�[α(jβ + γ ) + 1]

�[α(jβ + γ + 1) + 1]
. (59)

In both cases, x(t) is obtained by substituting y(t) in (55).
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5. Conclusions

Fractional differential equations that come from fractional variational calculus contain both
the left and the right fractional derivatives. These FDEs may also come from other
physical principles. Analytical schemes were presented to solve these types of FDEs. The
methods utilized properties of the fractional integrals, operational approach and successive
approximation technique to obtain the solutions. It is hoped that this investigation will initiate
further research in this field, and more elegant schemes would be found to solve Type2 FDEs.
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